
Journal of Engineering Mathematics, Vol. 7, No. 4, October 1973 
Noordhoff International Publishing-Leyden 
Printed in The Netherlands 

The flow of a viscous liquid down a variable incline 

J. H. M E R K I N  

School of Mathematics, University of Leeds, United Kingdom 

(Received August 23, 1972) 

319 

S U M M A R Y  
The flow of a thin film of almost inviscid fluid down a slope of variable inclination is considered. The equations governing 
the flow are the boundary-layer equations, and a numerical solution of these equations is obtained. It is found that in 
cases where the liquid film attempts to flow against gravity the flow will separate. The numerical solution indicates 
a singularity at the separation point. The nature of this singularity is discussed. 

I. Introduction 

The problem considered in this paper is that of the flow of a thin film of almost inviscid liquid 
down a variable incline. The thickness of the film is assumed small compared to a, a typical 
radius of curvature of the bed of the incline, while the Reynolds number, based on a, is assumed 
large. The equations governing the flow will then be the boundary-layer equations, with the 
difference that the flow in this case being driven by the gravitational force and not the usual 
pressure gradient. The outer boundary conditions are applied on a variable free surface. The 
form that this free surface takes is one of the unknowns in the problem. 

The case of a horizontal bed has been discussed by Watson [1], He obtained a similarity 
solution for the problem, and discussed how this is set up from certain initial conditions. 
Eventually there will be a hydraulic jump and Watson gave an estimate of the position of this 
jump. 

Ackerb~rg [2] has treated the flow of a thin film down a vertical slope. He took for the initial 
velocity one with a uniform profile and showed that the film rapidly settled down to one of 
constant thickness, and, in a sense, "forgot" the way in which the flow was set up. Ackerberg's 
analysis was done for a vertical slope, but can be taken over directly to a slope making a constant 
angle with the vertical. 

Smith [3] extended Ackerberg's work by assuming that, after the flow had reached its fully 
developed state, the inclination of the slope varied in a prescribed manner. He found that, as 
the bed became more horizontal, the gravity forces were less effective in driving the flow and the 
liquid in the film was slowed down more by viscosity. In certain cases this could lead to the flow 
reaching a separation point (i.e. a point where the skin friction became zero). Smith [3] used a 
momentum integral method to solve the problem. He chose fourth order polynomials for the 
velocity profile and obtained two ordinary differential equations (one from an integrated form 
of the boundary-layer equations and the other from a continuity condition). On solving these 
equations numerically he found that the solution broke down in the cases where separation 
was indicated. He then conjectured that this breakdown was due to the singular nature of the 
solution near the separation point. The main purpose of this paper is to confirm this conjecture. 
To do this, a numerical solution of the full equations is obtained. It is found that, in the cases 
where the flow separates there is a singularity in the numerical solution at the separation point. 
The nature of this singularity is discussed, and it is shown that the skin friction % behaves like 
(xs-x) ~ and the film thickness H like Hs + (x~-x)~H~ near the separation point (x is the co- l 
ordinate that measures distance along the bed, x = x~ is the separation point, and H~ and H 1 
are constant). This behaviour explains why Smith's approximate solution broke down. 
Derivatives of H occurred in his equations. 
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The bed profiles considered here are those used by Smith [3], so that a comparison can be 
made with his work. The numerical solution shows that separation will occur only where gravity 
is acting against the flow, whereas Smith's method gave separation in cases where the effect 
of gravity, though reduced, was still acting in the direction of the flow. 

2. Formulation 

We are going to consider the steady flow under gravity of a thin film of almost inviscid liquid 
down a slope of variable inclination. We define a co-ordinate system such that x measures 
distance along the bed and y distance normal to it. Call the angle that the bed makes with the 
horizontal O(x) and the free surface profile y =  h(x). Two types of slope are to be considered. 
The first consists of a straight section inclined at the constant angle Oo to the horizontal for 
x <  0 and a circular arc of radius a for x =0  with a smooth changeover at x=O so that the 
tangent to the arc makes the angle Oo with the horizontal at x = O. In this case sin 0 = sin (0o - x/a) 
for x >0. The second profile is that where O(x)is given by sin O=S,(x)=�89 
n being a positive integdr. Both these forms for the bed were treated by Smith [-3]. 

If ho, a and Uo are typical values of the film thickness, radius of curvature of the bed and 
streamwise velocity respectively then we are considering the situation where fl =ho/a ~ 1, the 
Reynolds number Re = Uoa/v >> 1 while e = U2/ga is O(1). (g is the acceleration of gravity and 
v is the kinematic viscosity of the liquid). If we define a Froude number by Fr = UZ/gho then 
this last assumption can be written as e = f l F r =  O(1). Under these assumptions the equations 
governing the flow will be, to =O(fl), the boundary-layer equations 

c~u ~v 
O x + ~ y  O, (1) 

(~U OU ~2U 
u ~x + v ~y = g S (x) + v - -  (2) ~y2 �9 

u and v are the velocity components in the x- and y-directions respectively and S(x)=sin 0. 
The boundary conditions are 

~u 
u = v = 0  on y = 0 ,  - - =  0 on y = h ( x ) ,  

Oy 
(3) 

f i(X) udy = Q 

(where Q is a constant and is the total volume flux). 
To specify the problem completely, initial conditions are also required. For both types of slope. 

considered the flow starts down a slope of constant inclination 0o, in the first case it is for x < 0 
and in the second 0o =re/6 as x ~  - ~ .  For a constant slope, equations (1) and (2) possess the 
well-known solution 

sinOo(hy - y2), /) 0 (4) 
u = g - ~ - -  ~ = . 

The flow is specified by the total flow Q, so that, in this case, h=(3vQ/g sin 00) +. From this 
solution we get h o and U0, the typical values of the film thickness and streamwise velocity, as 

ho = (vQ/g) § and Uo = gh2/v , (5) 

so that e = (Q4/a3 v 2 g)k. The required initial conditions are then given by (4), and are taken at 
x = 0  in the first case and as x ~  - ~ in the second. Ackerberg [2] has shown that for a film 
flowing down a plate (4) is strictly an asymptotic solution, but it is attained very quickly. In 
fact the error involved is exponentially small. This is the justification for using (4) as the initial 
conditions. 
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From equation (1) we can define a stream function ~k in the usual way, and then introduce 
non-dimensional variables by writing X = x/a, Y= y/ho, ~ = U o ho 7 t and H = h/ho. Equation (2) 
becomes, on using (5) 

~y3 + S ( X ) =  e ~X~Y ~X By2/  (6) 

with 
~g* 6 2 

- aY - 0 on Y= O, T = 1, ~y2 - 0 on Y= H(X),  (7) 

together with initial conditions 

ku = sin 0o y2 (3H~ - Y)/6, 

where H i = (3/sin 0o) ~. 

3. Numerical solution 

(8) 

In this section we give a method of obtaining a numerical solution of equation (6) together with 
boundary conditions (7) which starts with the given initial conditions (8) and proceeds step-by- 
step downstream until the separation point is reached. One of the problems in solving (6) is 
that the outer boundary conditions are applied on Y=H(X)  and H(X) is a variable in the 
problem. One method of overcoming this difficulty, as used by Ackerberg [2], is to use the 
von Mises form of the boundary-layer equations i.e. use (X, ~)  as independent variables 
instead of (X, Y). This has the advantage that the boundary conditions are now applied on 
ku=0 and 7/= 1 and H does not appear explicitly in the equations. This method has the 
drawback, however, in that the solution is singular near 7/= 0, in fact u oc ~g~ for small 7 ~. 
This can be overcome but not without some difficulty, but even then the variations in velocity 
are confined to a very small region near 71=0. This suggests trying to set up a numerical 
procedure for solving (6) using a more "natural" co-ordinate system. 

First make the transformation ~u= Hf(q, X), q = Y/H(X), and writing q-= 6f/Oq, (6) and 
(7) become 

Oqf" (HdH ~ ) Oq _ ~2q + H2S+e ~ q + H  2 dq-gU2q ~ 0 (9) 
Oq2 ~ 0 

H qdtl = 1 (10) 

with boundary conditions 

0q 
q = 0  on q = 0 ,  ~ = 0 on q = l  (11) 

and initial conditions q=Hg sin 0o(q-q2/2) .  
The boundary conditions are now applied on fixed lines but the variable H (X) appears in the 

equations, and the equation expressing constancy of volume flow (equation (10)) is now coupled 
with the momentum equation, equation (9). 

To solve equations (9) and (10) numerically, we start with the initial values of q and H and 
proceed step-by-step downstream. The idea is that, assuming q and H known at X 1, to give a 
method for calculating them at X2, with X2 > X1. To do this, derivatives in the X-direction are 
replaced by differences and all other terms are averaged over the step length A X = X 2 - X  v 
Equations (9) and (10) then become a system of non-linear ordinary differential equations for 
the unknowns q2 and/ /2  (the suffices 1 and 2 denote values of the functions at X~ and X2 
respectively). It is, however, more convenient to work in terms of m =qx + q2. To solve these 
ordinary differential equations the range 0 < q < 1 is divided up into N equal divisions each of 
length k and derivatives in the q-direction are replaced by finite differences of step length k. 
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From (9) and (10) we then get the N + 1 non-linear algebraic equations to be solved for the 
%. (j = 1, 2 . . . . .  N) and Hz 

co j+ 1 -2cos+cos+ l  2 (sl  + si)(n  + 

+ ~k 2 ((Dj+ 1 - -  O)j_ 1) [ (3H~ + H 2) (co, + co2 +. - .  + �89 j) - 4( H2 + H2) 6j]/8 AX 

- e k z coj (cos- 2q,s) (H~ + H~) /2A X = 0 (12) 

k(H, + H2)(co, + co2 + . . .  + coN)- 4 = 0 (13) 

where 6s--q1 a +q~2+ " ' + � 8 9  Equation (12) holds for j = l ,  2 . . . .  , N and (11) gives coo=0 
a n d  co N + 1 - -  CON- 1. 

Equations (12) and (13) have to be solved together by iteration using Newton's method. So 
that if we regard (12) and (13) as equations of the form f~(~j; H2)=0 (i= 1, 2, ..., N +  1, and 
j = 1, 2, N) and - (o) and H(f ) is an initial approximation to the solution, then a better ap- . . .  ~ LO s 

proximation co}o)+ Acoj and H(2~ AH 2 is calculated by solving the linear equations 

This process Was repeated until the difference between the two solutions was sufficiently small 
(less than 10 -5 for the present calculation). This method of iteration was found to converge 
quickly. Other methods of solving the non-linear equations were tried, such as linearising 
equation (12), or solving (12) first using an approximate value for Ha and then trying to improve 
this by re-calculating it from (13) using the co~ as calculated from (12). Both these methods 
were found to be unsuitable, as their convergence was extremely poor. 

Errors introduced by taking differences in the X-direction were kept small by covering the 
step from X] to X2 in first one then two steps and insisting that AX was small enough for the 
difference the two solutions thus obtained was small (less than 5" 10- 4 in the present calculation). 
It was found by trial that errors introduced by using finite differences in the q-direction could be 
kept small enough by taking N = 50, k = 0.02. In this way an overall accuracy of at least three 
figures was achieved. 

We can define a skin friction coefficient % by 

v (0u)  (027  j )  1 (0q )  

o= o 
(Oq/Oq)o was found using the formula 

Oq2) = 16q2 (k)-  q2 (2k) + 6k 2 H 2 S 2 

(~q)o 14k 

This was obtained by expanding q2 in a Taylor series about q = 0  and using the fact that 
(~2 q2/~q2)o = _ H2 $2 and (0 3 q2/Oq3)o = 0. 

In the case where the bed is a circular arc the numerical solution started at X =  0 with the 

E = 0,1 

E=0 .5  

=2 

E=10 

J 

I I I I I I I 
0.2 0A 0 ~ 0.5 0.8 1.0 1.2 X 

Figure 1. Values of film thickness H for various e, bed profile a circular arc. 
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Figure 2. Values of skin friction % for various e, bed profile a circular arc. 
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Figure 3. Values of film thickness H and skin friction % with bed profile S .= �89  +x2)) for n = l ,  2 and 3. 
Higher curves are H, lower curves are %. 

given initial conditions and proceeded downstream until the separation point (i.e. the point 
where % becomes zero) was reached. The calculation was performed for various e with 0o = x/6 
and the values of H and % obtained are shown in figures 1 and 2 respectively. In figure 3 is 
given the values of H and to~ for e=  1 when S=S, with n = 1, 2 and 3. In this case the integration 
started at a large negative value of X with the given initial conditions. As these hold only as 
X ~  - oo, this value of X had to be varied until one was found for which the numerical solution 
agreed with the asymptotic solution to within the required accuracy. 

The numerical solution of the full equations enables us to verify the conjecture made by 
Smith [3]. He obtained approximate solution of equations (1) and (2) using a momentum 
integral technique. By using an integrated form of equation (2) and by making a suitable choice 
of velocity profile he reduced the problem to the solution of ordinary differential equations. 
He found that the solution of these equations broke down in certain cases, where, he conjectured, 
the flow was near a separation point. The exact solution confirms this. As X ~ X s  (X=Xs is 
the separation point) the flow becomes singular in such a way that %--,0 and H~Hs (where 
Hs=H(Xs) ) While d%/dX and dH/dX both--*oe. So the breakdown in the solution found by 
Smith [3] .is not dependent on the particular approximation used but appears in the exact 
solution. This singularity found in the solution of equations (9) and (10) is analogous to the 
singularity at separation found, for ~xample, by Terrill [4], in the solution of the boundary- 
layer equations for the flow against an adverse pressure gradient and will be discussed in the 
next section. 

Figures 1, 2 and 3 show that the flow separates only in regions of adverse slope, i.e. where 
S(X) < 0. Decreasing e is to increase the importance of the viscous forces, but even with ~ = 0.1 
the flow separates at an angle of 2.3 ~ past the horizontal, while for e = 10 it is 38.8 ~ When 
S = S,(X), the flow separates when n = 3; but not when n=  1 and 2. In the latter case S > 0 
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for all X, but in the former S < 0 for 0.3 82 < X < 2.618, the flow separating at X = 0.663. This is 
in disagreement with Smith [3] who found that separation occurred in regions of favourable 
slope (i.e. where S >0). He found, for example that with S=$2 the flow separated at X=0.616 
whereas the exact solution shows that % has a minimum value at X =  1.5. With S >0 gravity is 
accelerating the flow. This is analogous to the boundary-layer flow in a favourable pressure 
gradient. With S < 0, however, the liquid film is flowing against gravity which will be retarding 
the flow (analogous to an adverse pressure gradient), and will reduce % to zero. 

Also considered was the effect of varying the initial angle 0o. The values of Os (the angle at 
which the flow separated) and Hs are given in table 1 for the case when the bed profile is a circular 
arc and e = 1. It is interesting to note that the angle past the vertical (0 s -  0o) at which the flow 
separated is very nearly the same for all the 0o considered. 

TABLE 1 

Oo Os Hs 

30 ~ 42.00 3.55 
45 ~ 57.53 3.50 
60 ~ 72.62 3.42 
90 ~ 102.73 3.33 

4. Solution near the separation point 

To discuss the solution near the separation point we first transform equation (6) by writing 
7*= Soe-IF(xa, Ya) where x a = X  s - X ,  Ya =(eSo) i Y, and So = -S(Xs)  which will be positive 
since the flow will separate only in a region of adverse slope. 

Equation (6) then becomes 

8aF S(xi) 8F 82F 8F oze  (14) 

8y--~1 + So - ~x 1 8y2 8y t 8x 1By 1 

with boundary conditions 

8F 
F - s y a  - 0 on Y a = 0 ,  (15) 

- 0 (16) 
~2 F 

F = e / b ,  8y2 on y l = b H ( x l )  where b=(eSo) i .  

The nature of the solution of equation (14) near a separation point has been discussed by 
Goldstein [5] and later by Stewartson [6] and Terrill [4]. Goldstein showed that, about the 
point x 1 =0, F(x l, Yl) had the series expansion 

F(xa, Ya)= Vo(Yl)+aa x~ F;(ya)+a2Xl F;(Yl) 

+ a a x  i log x 1F~(ya)+xlF4(y i )+ . . .  (17) 

where dashes denote differentiation with respect to Yi and where 

fYl(  F~ +4cq(F~ Fo-Fo '2) 2~n~la ~) F4(ya)=F~(yi) 1 -  "' z . . . .  
o T j  - (�88 at 

2~ ~ 
+ ~ log Yi F~(ya)~-a*F~(ya). 

The constants ai (i= 1, 2, 3, 4) can all be expressed in terms of the one constant el which, 
however, cannot be found from the series expansion. They are 

= 2~rc}e~/5 (�88 !)3, a 3 a a = 2 e l ,  a2 = -zrcq3/2~(�88 z 
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a ,  = - - 5 + (35-8"2  . 

7 is Euler's constant. Fo (71), the separation profile, has an expansion for small Yl in the form 

_ ~iYi Fo(yl )  y3 2 s ~ a  1 
6 30 120"~-~ (�88 !) 2 y6 

~2 y~ 
+ I( 4 I18, 

where S1 = (S-  1 dS/dx l )x  1 = o. The form of expansions (17) and (18) and the value of the constants 
a~ is determined from the condition that this solution must match with an inner solution. The 
details of which are given in Goldstein [5] and summarised in Stewartson [-7]. (17) and (18)will 
contain terms which cannot be expressed in terms of the constant ~1 and (18) will also involve 
terms in log y~, but these will be of higher order than the terms given in (17) and (18) (Brown and 
Stewartson [-8] ). 

Using (18), the expansion (17) will satisfy the boundary conditions (15). In order to make (17) 
satisfy the boundary conditions (16) we must expand H ( x l )  in the form 

H = H s + H l x ~ + H 2 X l + H 3 x  1 log x 1 + H 4 x  i -}- . . . .  (19) 

Putting this in (17) and using Taylor's theorem to expand the terms gives 

Fo (bHs) = e/b,  Fg (bHs) = 0 (20) 

H i = - a l / b ,  H 2 - a 2 / b ,  1 - 1 3 = - a J b  (21) 

and H 4 = - F 4 (bHs)/bF ~ (bHs). This last expression is obtained using F~' (bHs) = 0. Thus we can 
set up a systematic scheme for finding the constants in (19). Since F o (y~) involves the unknown 
constant ~1, the two equations given by (20) must be solved first to find ~l and H s.//1, H 2 and 
H 3 can then be found knowing ~1, while~Hs and F o are also needed to find H 4. The process could 
be carried on to higher terms if required. 

To find ~1 and H s exactly we need to know the function Fo(Yi), but we know only its expansion 
for small y 1- The expansion (18) can, however, be used as an approximation for F 0 (Yl). Equations 
(20) then become 

b - 6 - 5 -  - A l x 3 + A 2 x 4  + (bHs)4 ' 

S~ (bHs) 4 (22) 
O= 1 - 2 x 2 - 5 A l x 3 + 7 A 2  x4 + 

60 

where A1=~/20.2~.(�88 !)2, A2=2~2/2100(�88 !)4 and x = o t i b H  s. Equations (22)were solved 

TABLE 2 

X H (exact) H (approximate) % (exact) % (approximate) 

0.7331 3.55 3.68 0.007 0.000 
0.7325 3.51 3.62 0.015 0.014 
0.7300 3.42 3.53 0.034 0.034 
0.7100 3.13 3.21 0.107 0.108 
0.6900 2.96 3.01 0.158 0.159 
0.6500 2.72 2.70 0.240 0.242 
0.6100 2.56 2.44 0.310 0.314 
0.5700 2.43 2.22 0.373 0.379 
0.5300 2.33 2.01 0.432 0.440 
0.4900 2.24 1.82 0.486 0.497 
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~/ q (exact) q (approximate) 

0.1 0.015 0.014 
0.2 0.056 0.055 
0.3 0.118 0.119 
0.4 0.195 0.199 
0.5 0.282 0.286 
0.6 0.368 0.368 
0.7 0.446 0.436 
0.8 0.508 0.482 
0.9 0.548 0.503 
1.0 0.562 0.506 

together for al and Hs, then these values used in (21) to find the Hi, (18) being used to calculate 
/44. The values of H (given by (19)) and % (given by a similar series) near separation found in this 
way were compared with the exact values (given by the numerical solution) and there was good 
agreement in all the cases considered. For example, when 00 = n/6 and e= 1, the calculation 
gives a~ = 0.539 and Hs = 3.655. Table 2 gives a comparison between the approximate values of 
H and % calculated in this way and the exact values found from numerical solution. 

There is difficulty in locating the exact separation point since the solution becomes singular 
there. The numerical solution Stops just before separation with % still non-zero, though small. 
This final point is taken as the separation point for the purpose of the above calculation, and 
the results quoted are those at this point. The error in Xs in doing this will be small. In the above 
case X s is taken as 0.7331, with the exact separation point being no more than 0.0003 further on. 
This will mean that the exact value of H s will be higher than that given in table 2, perhaps 
increased by an estimated 0.04, though extrapolation here will be very unreliable. Also com- 
pared were the values of q as obtained from the numerical solution and (18). These values are 
given in table 3. The values from the numerical solution are again taken at the final step in the 
calculation. The values at the exact separation point will differ only slightly from those given 
in table 3. 
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